The generator matrix 1 0 0 1 1 1 X 1 X^2+X 1 1 1 X^2 X^2+X X^2+X X^2 1 1 X^2 X^2+X 1 1 1 X^2+X 1 1 1 X X 1 1 1 0 1 1 X^2 1 1 1 1 0 X^2 1 X 1 X^2+X X 1 0 X^2 X 0 1 1 1 X^2 1 X^2 X 0 1 X 1 0 1 0 X^2+X 1 0 X^2+X 1 1 1 X^2+X 0 X 1 X^2 1 1 0 1 0 X^2 X^2+1 1 1 0 0 X^2 X^2+1 1 1 1 X^2+X X X X+1 1 1 X^2+X X+1 X^2+X 1 X^2+X 1 X 1 1 X^2+X+1 0 X^2+X+1 1 X X^2+1 0 X^2+X X+1 X^2+X+1 1 1 1 X^2 0 X^2+X+1 1 X^2+X X+1 X 1 1 1 X^2+X X^2+1 X^2+1 1 1 1 X X^2+X X^2+X+1 1 X^2+X+1 1 X^2+X+1 X^2 1 1 1 1 X^2+X+1 X^2+1 1 1 1 X^2 X^2 1 0 X^2+1 0 0 1 X^2+X+1 X+1 X^2 X^2+1 X 1 1 X^2+1 X^2+X X X+1 1 1 X X+1 X^2+1 X X^2+X+1 X^2 X^2+1 0 0 X+1 X^2+X+1 X^2+X+1 X^2+X X X^2+X 1 X+1 1 X^2 1 X^2+X X^2+X 0 1 X^2+1 X^2+X+1 X+1 1 X^2+X+1 X^2+1 1 1 1 0 X^2 X X^2 X^2+X X X^2+X 0 X^2 1 1 X^2 0 X+1 1 X^2+X 1 X^2+X X X^2+X X^2+X+1 X^2+1 0 X^2+X+1 X^2 X^2+X+1 1 0 1 X^2+1 1 generates a code of length 80 over Z2[X]/(X^3) who´s minimum homogenous weight is 78. Homogenous weight enumerator: w(x)=1x^0+224x^78+136x^80+88x^82+34x^84+24x^86+1x^88+2x^92+1x^96+1x^104 The gray image is a linear code over GF(2) with n=320, k=9 and d=156. This code was found by Heurico 1.16 in 28.8 seconds.